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Abstract 

Three Corner Sat (3CS) is a mission of 3 university 
nanosatellites scheduled for launch in late 2002. The 
3CS mission will utilize significant autonomy to 
perform onboard science data validation and 
replanning. The 3CS mission will use onboard science 
data validation, responsive replanning, robust 
execution, and anomaly detection based on multiple 
models. Demonstration of these capabilities in a flight 
environment will open up tremendous new 
opportunities in space-borne science and space 
exploration that would be unreachable without this 
technology. 

1 Introduction 

The Three Corner Sat (3CS) mission is a University 
nanosat mission consisting of three coordinated 
satellites. 3CS will be launched from the Space Shuttle 
cargo bay via the Air Force Research Laboratory’s 
Multi-Satellite Deployment System (MSDS) in late 
2002, and will use extensive autonomous flight 
software. This software will enable significantly 
increased science, relating to the 3CS science goals of 
imaging earthborne clouds from low earth orbit. The 
3CS mission also represents significant outreach, as 
the mission and spacecraft are designed, built and 
operated almost entirely by students at the University 
of Colorado, Arizona State University, and New 
Mexico State University. 

This paper focuses on the onboard autonomy 
capability that will be used for the 3CS mission. The 
3CS autonomy capability (threecornersat.jpl.nasa.gov) 
includes: the SCL robust execution system, the 
CASPER continuous planning system, an onboard 
science data validation module, the SELMON 

anomaly detection and isolation system, and a basic 
spacecraft coordination package. 

The first element of 3CS autonomy is the 
Spacecraft Command Language (SCL) used for robust 
execution. In 1997, SCL was flown by CSGC on the 
DATA-CHASER shuttle payload [Chien et al. 1999]. 
SCL has also flown onboard several missions 
including Clementine and FUSE (see 
www.sclrules.com). SCL provides a rule and script-
based procedural language for encoding robust 
execution procedures as well as basic coordination 
constructs such as locking, blocking, and run-time 
resource management. SCL will be used to 
demonstrate low-level autonomy including: event-
driven execution, local retries, low-level fault 
responses, and command validation. 

The second element of 3CS autonomy is the 
Continuous Activity Scheduling Planning Execution 
and Replanning (CASPER) [Chien et al. 2000] 
(casper.jpl.nasa.gov) onboard planning software. 
CASPER will demonstrate onboard continuous 
planning to enable the 3CS constellation to respond to 
mission anomalies, mission opportunities, as well as 
onboard evaluation of science data. Onboard planning 
enables integration of the planning process with 
execution to provide feedback.  

The third element of autonomy onboard 3CS is 
science data validation. Because the 3CS spacecraft 
will be tumbling, many science images may be of 
outer space, the Sun, or with the Earth in only a small 
portion of the image. Onboard data validation will use 
heuristic methods to estimate the utility of science 
images. The CASPER onboard planner will then use 
these utility scores in developing future operations 
plans. This science information will be used to discard 
images of lowest utility, prioritizing downlink to send 
the best images first, and making plans to acquire 
more science images if storage and other operations 
constraints allow. 

The fourth element of 3CS autonomy is the 
SELMON monitoring system. SELMON uses 
empirically derived error bounds to enable context-



sensitive anomaly detection. SELMON will be used to 
derive error limits and anomaly detection to assist in 
monitoring the performance of the 3CS constellation. 

Finally, 3CS will be flying basic spacecraft 
coordination software. This software will resolve the 
leadership election problem, in which reliably one 
spacecraft is selected as the lead spacecraft that will 
perform centralized control of the three spacecraft 
constellation. 

The remainder of this paper is organized as 
follows. First we describe the basic elements of the 
Three Corner Sat Mission. Next we describe the 
onboard science data validation algorithms. We then 
describe the robust execution (SCL) and onboard 
replanning (CASPER) capabilities. Next the 
SELMON onboard monitoring and teamwork 
capabilities are described. Finally, we describe 
mission status, related work, and future work. 

2 The Three Corner Sat 
Constellation Mission 

The Three Corner Sat constellation will consist of 
three satellites flying in a formation that degrades as 
the mission continues. The spacecraft will be deployed 
from the Space Shuttle in September 2002. The 
mission length is expected to be approximately three 
months, dependent on atmospheric drag that will 
eventually cause the satellites to de-orbit. 

Each of the three spacecraft has as its primary 
science instrument two fixed cameras. These cameras 
will be used to take images of the earth with the 
intention of capturing images of clouds. In order to 
simplify the mission and costs, the spacecraft will be 
tumbling (e.g., not attitude stabilized or controlled). 

The 3CS spacecraft are lightweight nanosatellites 
each weighing approximately 15 kg. The exterior 
envelope of the structure is a six-sided disk structure 
consisting of tubular supports and machined end caps 
to hold the bulk of the loading. Figure 1 shows the 3 
spacecraft stack before deployment and Figure 2 
shows a single spacecraft in the deployed state.  

 
Figure 1: 3-Spacecraft Stack Prior to Deployment 

 
Figure 2: Single Spacecraft after Deployment 

 
The exterior of the spacecraft is hexagonal with solar 
panels completely covering all sides except the top 
and bottom. The solar array panels are mounted on 
thin aluminum sheets that are attached to the exterior 
of the frame. All components are attached to 
aluminum honeycomb plates, which fasten to the main 
frame via slide-in interface brackets, and/or standard 
socket head cap screws. The batteries are stored in the 
middle of the structure to avoid an unbalanced inertial 
configuration. The batteries cells are housed in an 
eccofoam and aluminum structure attached in a 
manner to stiffen the component panels from harsh 
vibration environments. 

The onboard flight processor is a 40 MHz 
PowerPC 825 that is not radiation hardened. The flight 
processor will be running the VxWorks real-time 
operating system with 16 MB of non-volatile RAM 
and 16 MB of dynamic RAM. This available memory 
must hold the operating system kernel, all of the 
traditional flight software (to manage the power, 
camera, and communication subsystems), the 
autonomy flight software, and all science data (camera 
images). 

3 Onboard Science Data 
Validation Algorithms 

The first element of onboard decision-making is 
onboard science data validation. Because the 3CS 
spacecraft are not attitude controlled (e.g.tumbling), 
their rotation will be characterized and modeled using 
information derived from the solar panel power 
generation. However, because of the difficulty of 
accurately modeling this motion, it is expected that 
many science images will contain little or no portions 
of the Earth. In order to detect these situations, 3CS 
will fly software to evaluate science images. The 
simplest way to detect these cases is to compress the 
images. Images of constant dynamic range (e.g. almost 



all zeros caused by missing the Earth entirely) will 
compress almost completely (e.g. to very small size). 
Computing an average will distinguish all zeros from 
all maximum values. Alternatively more complex 
algorithms to find the limb of earth (the extremely 
bright crescent of the edge of the Earth facing the Sun) 
could be used. A range of these algorithms is currently 
being considered and tested on existing images 
deemed to be similar to 3CS mission data. 

4 Robust Execution Software 

SCL [SCL, 2001] is a Commercial off the shelf 
(COTS) software package whose core is a powerful 
scripting language. It enables a control system to 
process data input from multiple sources representing 
the state of the system and to take action based on 
either directed or detected system state. 

SCL technology has been in development since 
1988. SCL was proven in its successful flight on board 
Clementine-1 and ROMPS in 1994. Because it was 
first developed for an embedded flight environment, 
SCL has a small memory footprint and low 
computational demands. 

The SCL language combines the features of a 
traditional scripting language, such as systems test and 
operations language (STOL), with the logic capture 
capability of a rule-based expert system and the 
functionality of a database definition language. 

Using the SCL language—including scripts, rules 
and constraints, data formats, templates and 
definitions—a system designer can fully define all 
data and processes used by the control system. The 
system can take action based on time, operator 
directive, detected system state, or any combination of 
these. In addition, a user can dynamically reconfigure 
the system by modifying, in real-time, the SCL 
language constructs that specify what actions should 
take place under what circumstances. 

SCL scripts, rules, and databases are reusable 
across a family of control systems. For example, for 
the Far Ultraviolet Spectroscopic Explorer (FUSE) 
mission, SCL models were reused: on the payload 
flight processor, in the payload integration and test 
system, and at the satellite control center. On 3CS, the 
same core set of rules and scripts is used for 
prototyping, testing, as well as in the ground software 
and flight software. 

The SCL database contains records defining all 
data items that characterize a given system.  Some 
examples include sensor measurements, actuator 
states, and derived data. Each record includes the 
current value of the data item and various attributes 
that are accessible by other SCL modules, scripts, and 
rules. Certain attributes can be “set” to cause a rule to 

trigger or to control actuators. Special record types 
specify how a data item is to be extracted from an 
input data stream, such as for telemetry processing.  

The SCL DataIO module acquires data in real-time 
from external sources, updates the database, converts 
the data to engineering units, and filters, smoothes and 
archives the data if desired. DataIO also performs 
limit checking, and notifies the Real Time Engine 
(RTE) if any data value change exceeds a user-defined 
threshold. The SCL RTE is the inference engine for 
the underlying expert system, the command 
interpreter, and the script scheduler and execution 
manager. SCL scripts and rules are compiled by the 
SCL compiler and loaded to the RTE in the form of an 
SCL project. This project provides the RTE with the 
procedural, scheduling, and event-capturing elements 
of the system. The RTE captures all SCL database 
updates and processes the corresponding rules 
associated with a particular database item. The SCL 
compiler also supports real-time communication 
between an external operator and the RTE and SCL 
database via a “command line” interface.  

 SCL is used as the “glue” for the 3CS flight 
software, and integrates the autonomy software with 
the communications, power, and science payload 
software. Software components (external to SCL) 
communicate with the SCL RTE using a Message 
Software Bus. SCL can send a “notify“ message to an 
external “listen” application when an SCL script or 
rule changes the state of an actuator. SCL also 
provides a constraint checking capability that allows 
the RTE to impose pre-conditions on command 
execution. This enables SCL to avoid potential failure 
scenarios, or to automatically execute pre-command 
configuration scripts.  

SCL’s mixture of procedural, time-based, and 
event-based programming using scripts and rules 
provides a rich environment for the design of 
autonomous applications. SCL scripting automates 
routine tasks and ensures consistently correct 
command sequences. Using rules that monitor and 
reason based on system state information, SCL can 
detect and react to events, such as anomalies, faster 
than human operators. SCL executes both time-based 
and event-based operations simultaneously in real-
time.  

For the 3CS mission, SCL is used to integrate the 
flight software components. SCL scripts will be used 
onboard to perform activities such as imaging, 
managing the inter-satellite communications link, 
coordinating ground/spacecraft communications 
opportunities, managing the power subsystem, and 
performing onboard housekeeping (such as data and 
event logging). 

SCL rules and constraints encode the 
interdependencies between various activities being 



performed onboard each of the 3CS spacecraft. For 
example, if onboard sensors indicate that a spacecraft 
is low on power, onboard planning and execution will 
be used to reduce the use of the power-intensive 
transceivers. Additionally, power availability will be 
monitored to appropriately postpone imaging 
opportunities until the spacecraft has reached a 
nominal power state. SCL scripts have the capability 
to check state and resource availability so as to only 
execute if they do not endanger the spacecraft. SCL 
will also be used to monitor and log spacecraft 
telemetry points as well as to execute the actual data 
dumps for downlinks during communications 
opportunities. 

5 CASPER Planning Software 

3CS will use onboard continuous planning software. 
This software will be used to generate mission plans to 
manage the science and engineering activities of the 
spacecraft. Specifically, 3CS will be flying the 
Continuous Activity Scheduling Planning Execution 
and Replanning (CASPER) continuous planning 
system. 

Traditionally, the majority of planning and 
scheduling research has focused on a batch 
formulation of the problem. In this approach, when 
addressing an ongoing planning problem, time is 
divided up into a number of planning horizons, each of 
which lasts for a significant period of time. When one 
nears the end of the current horizon, one projects what 
the state will be at the end of the execution of the 
current plan (see Figure 3). The planner will then 
generate a plan for the new horizon using a user-
defined set of goals and the expected initial state. As 
an example of this approach, the Remote Agent 
Experiment operated in this fashion (Jonsson et al. 
2000). 

Plan  for 
next horizon

Plan for 
nex t horizon

 
 

Figure 3: Traditional Batch Plan  
then Execute Cycle 

 
This approach has a number of drawbacks. In this 

batch oriented mode, typically planning is considered 
an off-line process, which requires considerable 
computational effort, and there is a significant delay 
from the time the planner is invoked to the time that 

the planner produces a new plan.1 If a negative event 
occurs (e.g., a plan failure), the response time until a 
new plan is generated may be significant. During this 
period the system being controlled must be operated 
appropriately without planner guidance. If a positive 
event occurs (e.g., a fortuitous opportunity, such as 
activities finishing early), again the response time may 
be significant. If the opportunity is short lived, the 
system must be able to take advantage of such 
opportunities without a new plan (because of the delay 
in generating a new plan). Finally, because the 
planning process may need to be initiated significantly 
before the end of the current planning horizon, it may 
be difficult to project what the state will be when the 
current plan execution is complete. If the projection is 
wrong the plan may have difficulty.  

However, in an onboard planning context, the 
planner is an embedded entity that makes the batch-
oriented model of planning inappropriate. Specifically, 
such an embedded planner must be anytime and 
responsive. It must be anytime in that at any point in 
time there must be an executable plan. This means that 
generative planning techniques are less suitable 
because they do not have the “anytime” property. 

To achieve a higher level of responsiveness in a 
dynamic planning situation, we utilize a continuous 
planning approach and have implemented the 
CASPER continuous planning system (Chien et al., 
2000). Rather than considering planning a batch 
process in which a planner is presented with goals and 
an initial state, the planner has a current goal set, a 
plan, a current state, and a model of the expected 
future state. At any time an incremental update to the 
goals, current state, or planning horizon (at much 
smaller time increments than batch planning)2 may 
update the current state of the plan and thereby invoke 
the planner process. This update may be an 
                                                           

1 As a data point, the planner for the Remote Agent 
Experiment (RAX) flying on-board the New 
Millennium Deep Space One mission (Jonsson et al 
2000) takes approximately 4 hours to produce a 3 day 
operations plan. RAX is running on a 25 MHz RAD 
6000 flight processor and uses roughly 25% of the 
CPU processing power. While this is a significant 
improvement over waiting for ground intervention, 
making the planning process even more responsive 
(e.g., on a time scale of seconds or tens of seconds) to 
changes in the operations context, would increase the 
overall time for which the spacecraft has a consistent 
plan. As long as a consistent plan exists, the spacecraft 
can keep busy working on the requested goals and 
hence may be able to achieve more science goals. 
2 For the spacecraft control domain we are envisioning 
an update rate on the order of tens of seconds real 
time. 
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unexpected event or simply time progressing forward. 
The planner is then responsible for maintaining a 
consistent, satisficing plan with the most current 
information. This current plan and projection is the 
planner’s estimation as to what it expects to happen in 
the world if things go as expected. However, since 
things rarely go exactly as expected, the planner 
stands ready to continually modify the plan. From the 
point of view of the planner, in each cycle the 
following occurs: 

• Changes to the goals and the initial state first 
posted to the plan,  

• Effects of these changes are propagated through 
the current plan projections (including conflict 
identification) 

• Plan repair algorithms3 are invoked to remove 
conflicts and make the plan appropriate for the 
current state and goals 

 
This approach is shown in below in Figure 4. At 

each step, the plan is created by using incremental 
replanning from:  

• The portion of the old plan for the current 
planning horizon; 

• The change (∆) in the goals relevant for the 
new planning horizon; 

• The change (∆) in the state; and 
• The new (extended) planning horizon 
 

 
For the 3CS mission, CASPER will manage the 

near-term mission plan in between daily uplink and 
downlink passes. This involves tracking the 
engineering, communications, and science activities 
and modifying them in response to execution 
feedback. The most significant of these will be 
replanning of science observations based on onboard 
data assessment. Using a science score computed for 
each image onboard, CASPER will prioritize images.  
                                                           
3 For details on the state/resource representation or the 
repair methods see (Rabideau et al. 1999). 

CASPER will then decide whether or not to discard 
images with little or no Earth in the frame, and plan 
for new images in an attempt to maximize the science 
return. While replanning, CASPER will need to 
account for available system resources: imaging 
opportunities, available power and energy, and 
available memory. CASPER will also need to manage 
setup procedures for downlink, uplink, command load, 
and imaging activities. 

Within the available flight processor resources, 
CASPER is expected to be able to respond to activity 
and state updates on the 10 to 60 second timescale. 
This will enable more recent information regarding the 
execution status of activities as well as monitored state 
and resource values to influence planning. 

CASPER will be integrated with the SCL 
execution system allowing for tight feedback from 
SCL rules and scripts to be reflected and acted upon 
within the CASPER plans. 

The CASPER system is currently being deployed 
in a suite of applications including spacecraft control, 
autonomous ground communications stations, 
uninhabited aerial vehicles, and industrial control. 

There is significant interest in using CASPER to 
provide onboard planning for single rover and multi-
rover formations. In collaboration with the Long 
Range Science Rover effort, CASPER is being 
integrated with onboard control software for the 
Rocky 7 and Rocky 8 prototype planetary rovers 
[Volpe et al. 2000]. In this application, CASPER 
generates validated rover-command sequences for 
Rocky 7 based on high-level science and engineering 
activities. Once a plan has been generated it is 
continuously updated during plan execution to 
correlate with sensor and other feedback from the 
environment so that the planner may be responsive to 
unexpected changes.  

CASPER has also been used in research 
demonstrations of spacecraft constellation autonomy 
(Barrett 1999, Barrett 2000) and rover swarms (Chien 
et al. 2000). In these efforts, CASPER is used in a 
distributed fashion to coordinate a team of rovers or 
spacecraft in achieving planetary science goals (for the 
remainder of this discussion we presume a distributed 
rover model but analogous efforts are underway 
involving distributed spacecraft). For this application, 
a distributed version of CASPER was developed 
where it is assumed each rover has an onboard 
planner, which allows rovers to plan for themselves 
and/or for other rovers. Each onboard planner 
generates a rover command sequence for achieving 
science goals and also performs execution monitoring 
and dynamic re-planning when necessary. This 
distributed planning environment is part of a multi-
rover execution architecture being developed at JPL 
that integrates a number of systems including the 



ASPEN planning and scheduling system, a machine-
learning data analysis system, Rocky 7 rover-control 
software, and a multi-rover simulation environment 
(Estlin et al. 1999). 

CASPER is also being deployed to automate 
ground communications stations (Fisher et al. 2001) 
and uninhabited aerial vehicles (Colgren et al. 2000). 

6 SELMON Monitoring Software 

The SELective MONitoring system (SELMON) 
(Doyle et al. 1993, Doyle 1995) is a generalized 
software-based monitoring system that uses multiple 
anomaly models to identify and isolate phenomena.  
SELMON improves upon existing monitoring 
methods in two areas: 

Anomaly Detection- SELMON employs several 
techniques for recognizing abnormal behavior, going 
beyond the traditional methods of limit sensing 
(comparing sensor values to predefined alarm 
thresholds) and discrepancy detection (compares 
sensor values to predictions from a simulation). 
SELMON detects anomalies that traditional software-
based methods fail to detect, making the anomaly 
detection process more complete and removing this 
burden from the operators. 

Attention Focusing- Once an anomaly has been 
detected, SELMON determines how much of the 
system being monitored has been affected. This kind 
of information can be critical in the first few moments 
of an emergency, when several sensors reporting the 
same anomaly may lead to operator confusion and 
delayed response. 

For the 3CS mission, current plans are to fly 
several anomaly detection methods onboard the 
spacecraft with more analysis to take place on the 
ground (where more memory and computational 
power are available). Based on availability of 
resources, this decision will be evaluated closer to 
launch. 

Using SCL in conjunction with SELMON will 
enable further insight into system performance by 
evaluating summary data produced through the use of 
these tools. SELMON profiling will be used to 
monitor several aspects of system performance 
including: communication system performance, power 
system performance, as well as thermal characteristics 
of the spacecraft. SELMON will also be applied to 
tracking data (derived externally) and used to analyze 
the trajectory and orbit decay to assist in projecting 
mission lifetime, thermal, and communications 
characteristics. 

The pairing of SCL and SELMON allows for a 
system that can be incrementally automated based on 
actual mission performance, experience gained during 

the mission and increased confidence in the 
automation of a given function rather than automating 
functions prior to launch based on predicted behavior. 

7 Teamwork and Coordination 

While the 3CS mission utilizes three spacecraft, in 
order to simplify the mission as much as possible, 3CS 
uses a simple coordination scheme based on 
centralized control. One spacecraft is designated the 
master spacecraft that will maintain the operations 
plan for all three spacecraft. 

However, there still remains the problem of 
reliably electing a leader. Using a single static leader 
(e.g. designated prior to launch) is undesirable because 
if that spacecraft loses some key functionality it would 
mean the end of the mission. This general leadership 
election problem has been analyzed in depth (Tushar 
et al, 1996a, 1996b). Current plans are to implement a 
basic hard-coded solution to the three spacecraft 
problem in the onboard flight software. 

8 Mission Status and Schedule 

The 3CS mission is scheduled for launch in late 2002, 
with the software design, development, and integration 
already underway. The development schedule includes 
integration milestones continuously throughout the 
spring and summer of 2001. As part of this effort, the 
CASPER software is already being integrated with the 
SCL execution system. Additionally a 3CS testbed has 
been developed at the University of Colorado, where 
the individual pieces of the autonomy software are in 
the process of being integrated. 

9 Related Work and Future Work 

One related autonomy flight was the Remote Agent 
Experiment (RAX) [RAX, 1999]. The 3CS 
autonomous spacecraft mission differs from RAX in 
several ways. First, 3CS will be flying autonomy 
software for the entire mission duration (expected to 
be approximately 3 months), whereas RAX controlled 
the Deep Space One Spacecraft twice for 
approximately two days each. Second, 3CS will 
demonstrate closing the loop with an onboard science 
element as well as demonstrating onboard automation 
of engineering functions, whereas RAX did not 
involve science components. However, the Deep 
Space One Spacecraft was considerably more complex 
than the 3CS spacecraft. Finally, the constituent 
autonomy software modules used by each mission are 
different. RAX demonstrated Mode Identification and 
Reconfiguration using Livingstone and Burton, robust 



execution using the Execution Support Language 
(ESL), and onboard planning using the Remote Agent 
Planner and Scheduler. 

PROBA[PROBA] is a European Space Agency  
mission that will demonstrate onboard autonomy. 
PROBA will be launching in 2001. 

Techsat-21 is a United States Air Force Mission 
launching in 2004. This mission will demonstrate the 
Autonomous Sciencecraft Constellation concept 
[Chien et al 2001, ASC 2001], using the CASPER 
planning software and SCL robust execution software. 
ASC will demonstrate the onboard science concept 
using a much more capable three spacecraft 
constellation.  In addition to CASPER and SCL, ASC 
will use the Object Agent software to perform 
autonomous formation flying and maneuvering.  In 
addition, ASC will use the Livingstone 2 and Burton 
software for model-based mode identification and 
reconfiguration. 

10 Conclusions 

The 3CS mission will use significant onboard 
autonomy including: robust execution using SCL, 
onboard planning using CASPER, onboard data 
validation, and onboard anomaly detection using 
SELMON. This exciting new mission will validate 
key autonomous systems technologies for future 
missions furthering the long-term quest for more 
capable, autonomous space systems for the 21st 
century. 
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